Thomas G. Chrien and Robert O. Green

1 jet Propulsion] .aboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadc.aaCA91109 USA

Abstract

The Airborne Visible/infrared Imaging Spectrometer (AVIRIS) measures the upwelling radiance in 224 spectral bands. These data are acquired as images of approximately 11 by up to 100 km in extent at nominally 20 by 20 meter spatial resolution. In this paper we describe the uderlying spatial sampling and spatial response characteristic of AVIRIS.

1,0 AVIRIS Spatial Resolution and Sampling Interval

The spatial field stop of the AVIRIS optical system is defined by onc of four 200 pm circular fibers for each of spectrometers (Chrisp et al., 1987). The numerical aperture of the fibers tapers off smoothly at the edges. In otherwords, it is not a sharp pill-box function, but a circularly symmetric Gaussian-like function. By the time you add aberrations and scanner smear, a circularly symmetric Gaussian is an excellent approximation. This is shown in Figure 1 for data measured in the laboratory from a narrow beam (O. 1 milliradians) of collomated light scanned across a portion of the AVIRIS field of view (FOV). The slightly jagged nature of the data represents line-to-line scan jitter.

BEST FIT GAUSSIAN TO SPATIAL RESPONSE FUNCTION

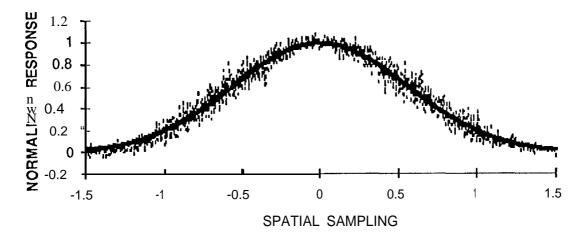


Figure 1. AVIRIS spatial response function.

The AVIRIS spatial response function or instantaneous field of view (1 FOV), including scan smear is a Gaussian function with a FWHM of 1.313 spatial samples and a line,-to-line RMS jitter of 0.077 spatial samples. Adjacent pixel samples within a givenline arc separated by 0.8S milliradians (Miller, 1987). Using this factor to convert to milliradians, the IFOV is 1.12 milliradians and the line-to-line. jitter is 0.066 mill Iranians. Cross-track, these, figure are independent of altitude. Ground spot sizes arc, of course, the product of IFOV (inradians) and lilt aircraft platform altitude (AGL). AVIRIS operates from a NASA ER-2 at nominally 204-1 km altitude above scalevel. A diagram of these relationships is shown in Figure 2., where s(n) refers to the nth cross-track sample.

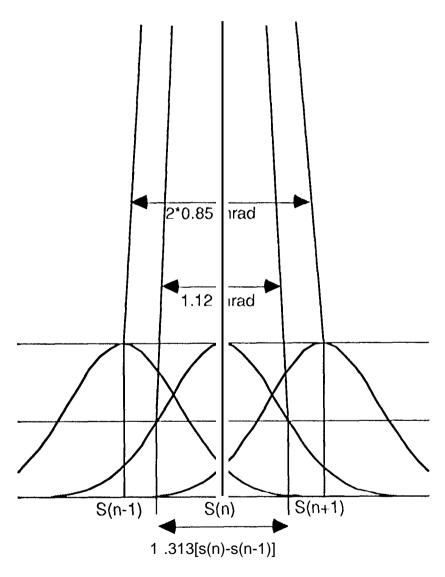


Figure 2. Goss-track sampling

The detector read-out delay will cause a (n-1)/66 sample shift, where n is the read-out position of spectral channel with respect to each of the four spectrometers. Table 1. can be used to determine

the appropriate value for the index n for a given spectral channel. 'Ibis mad-out delay is compensated in the radiometrically calibrated data distributed to investigators (Green et al 1991).

Table 1. The index n for various spectral channels

Spectrometer	Channel	n.
A	001 1	
	932 3	32
В	033	1
	096	61
C	097	
	160	&L
D	161	1
	<u> </u>	<u>64</u>

The down-track sampling distance is due entirely to the motion of the aircraft from line to line. 1'his is determined by the product of the aircraft velocity and the line repeal period of 1/12 of a second. For the ER-2, this distance is nominally 17 meters. Figure 3 shows the sampling where L(k) refers to the kth down-track line. in the down-track case, the GIFOV spot size can become less than the sampling interval for mountains above 4,8 km AS I. when the aircraft is at 20 km ASI..

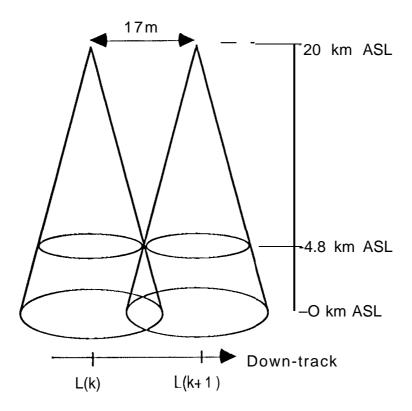


Figure 3. Down-track sampling.

2.0 Summary

The spatial sampling and spatial response function of the AVIRIS system in the cross and down track directions have been described. These characteristics should be taken into account when quantitatively measuring expressed spectral abundance of descrete objects of less than 20 by 20 m size.

3.0 Acknowledgements

This research was carried out at the Jet Propulsion Laboratory, California Institute of technology, under contract with the National Aeronautics and Space Administration.

4.0 References

Chrisp, M. P., T. G. Chrien and L. Stiemle, "AVIRIS Foreoptics, Fiber Optics and On-board Calibrator", SPIE, v 834, Imagins Spectroscopy 11,1987

Green, R. O., Steve Larson and Ian Novack, (1991), Calibration of AVIRIS digitized data, in Proceedings of the ~'bird AVIRIS Workshop, R.O. Green, editor, JPL Publication, 1991.

Miller, D. C., "AVIRIS Scan Drive Design and Performance", SPIE, v 834, Imagins Spectroscopy 11, 1987